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Consensus Conditions of Multi-Agent Systems
With Time-Varying Topologies and
Stochastic Communication Noises
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Abstract—This paper investigates the average-consensus
problem of first-order discrete-time multi-agent networks in
uncertain communication environments. Each agent can only use
its own and neighbors’ information to design its control input.
To attenuate the communication noises, a distributed stochastic
approximation type protocol is used. By using probability limit
theory and algebraic graph theory, consensus conditions for this
kind of protocols are obtained: (A) For the case of fixed topologies,
a necessary and sufficient condition for mean square average-con-
sensus is given, which is also sufficient for almost sure consensus.
(B) For the case of time-varying topologies, sufficient conditions
for mean square average-consensus and almost sure consensus
are given, respectively. Especially, if the network switches be-
tween jointly-containing-spanning-tree, instantaneously balanced
graphs, then the designed protocol can guarantee that each indi-
vidual state converges, both almost surely and in mean square, to a
common random variable, whose expectation is right the average
of the initial states of the whole system, and whose variance
describes the static maximum mean square error between each
individual state and the average of the initial states of the whole
system.

Index Terms—Average-consensus, distributed coordination, dis-
tributed estimation, multi-agent systems, stochastic systems.

I. INTRODUCTION

D ISTRIBUTED coordination control of multi-agent net-
works is a basic problem and attracts a lot of attention

from the control community. Among others, consensus control
is one of the most fundamental problems in this area, which
roughly speaking means to design a network protocol such that
as time goes on, all agents asymptotically reach an agreement.
In some cases, the agreement is a common value which may
be the average of the initial states of the system, and often
called average-consensus and has wide application background
in the area such as formation control [1], distributed filtering

Manuscript received April 19, 2008; April 26, 2009 and November 21, 2009;
accepted December 13, 2009. First published February 17, 2010; current ver-
sion published September 09, 2010. This paper was presented in part at the
27th Chinese Control Conference and the 29th Chinese Control Conference.
This work was supported by the National Natural Science Foundation of China
(under Grants 60934006 and 60821091) and the Chinese National Laboratory
of Space Intelligent Control. Recommended by Associate Editor I.-J. Wang.

The authors are with the Key Laboratory of Systems and Control, Institute
of Systems Science, Academy of Mathematics and Systems Science, Chinese
Academy of Sciences, Beijing 100190, China (e-mail: litao@amss.ac.cn;
jif@iss.ac.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2010.2042982

[2], multi-senor data fusion [3] and distributed computation
[4]. Olfati-Saber and Murray [5] considered the average-con-
sensus control for first-order integrator networks with fixed and
switching topologies. They proved that, if at each time instant,
the network is a strongly connected and balanced digraph, then
the weighted average-type protocol can ensure average-con-
sensus. Kingston and Beard [6] extended the results of [5]
to the discrete-time models and weakened the condition of
instantaneous strong connectivity. They proved that if at each
time instant the topology graph is balanced and the union of
graphs over every bounded time interval is strongly connected,
then average-consensus can be achieved. Xiao and Boyd [7]
considered first-order discrete-time average-consensus with
fixed and undirected topologies. They designed the weighted
adjacency matrix to optimize the convergence rate by semi-def-
inite programming. In addition to the above works, some
researchers also considered the high-order dynamics [8], [9],
the topologies of random graphs [10]–[13] or control design
based on individual performance optimization [14]–[17].

Most of the above mentioned works assumed an ideal
communication channel between agents, that is, each agent
measures its neighbors’ states accurately. Obviously, this
assumption is only an ideal approximation for real communi-
cation channels. Real networks are often interfered by various
kinds of noises during the sending, transmission and receiving
of information, such as thermal noise, channel fading, quantiza-
tion effect during encoding and decoding [18], etc. Consensus
of dynamic networks with stochastic communication noises is a
common problem in distributed systems [19], and has attracted
the attention of some researchers [20]–[25]. Ren et al. [22])
and Kingston et al. [23] introduced time-varying consensus
gains and designed consensus protocols based on a Kalman
filter structure. They proved that, when there is no commu-
nication noise, the designed protocols can ensure consensus
to be achieved asymptotically. Xiao et al. [24] considered
the first-order discrete-time average-consensus control with
fixed topologies and additive input noises. They designed the
optimal weighted adjacency matrix to minimize the static mean
square consensus error. However, since the consensus gain
and the adjacency matrix are time-invariant, as time goes on,
the state average of the system will diverge with probability
one, even if the noises are bounded. Huang and Manton [20]
considered the first-order discrete-time consensus control with
fixed topologies and communication noises. They introduced
decreasing consensus gains (where is the discrete time
instant) in the protocol to attenuate the noises. They proved
that, if is the same order as , , ,
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and the network is a strongly connected circulant graph, then
the static mean square error between the individual state and
the average of the initial states of all agents is in the same
order as the variance of the noises; if satisfy the step
rule of classical stochastic approximation, and the network is
a connected undirected graph, then the designed protocol can
ensure mean square weak consensus. Li and Zhang [25], [26]
considered the first-order continuous-time average-consensus
control with fixed topologies and communication noises. They
used time-varying consensus gains in the protocol and gave a
necessary and sufficient condition for asymptotically unbiased
mean square average-consensus.

From [26] we can conclude that: (i) if there are communica-
tion noises, then the weighted average-type protocol proposed
by [5] cannot ensure the stability of the closed-loop system,
and even if the noises are bounded, the state average of the
system will diverge with probability one. (ii) distributed sto-
chastic approximation type consensus protocols are effective for
attenuating communication noises and ensuring mean square
consensus. Particularly, Li and Zhang [25], [26] showed that a
necessary and sufficient condition for asymptotically unbiased
mean square average-consensus is that the consensus gains sat-
isfy the step rule similar to that of classical stochastic approxi-
mation.

The existing work on distributed stochastic approximation
type consensus protocol is almost focused on the case of fixed
topologies. However, there are many kinds of uncertainties
for real networks, which are due to not only the existence of
communication noises, but also the time-variation of network
topologies and parameters. On the one hand, stochastic noises
interfere the communication channels among different agents;
on the other hand, the network topologies and parameters are
time-varying. These two aspects constitute the basic factors of
the uncertainties in distributed communication environment.
Thus, for distributed coordination of multi-agent systems in
uncertain environments, consensus control with time-varying
topologies and stochastic communication noises is still a fun-
damental problem to be solved.

In this paper, we consider the average-consensus control
for networks of discrete-time first-order agents with directed
topologies. The information available for each agent to design
its control input is its local state and the states of its neighbors
corrupted by stochastic communication noises. The noises con-
sidered here are martingale differences with uniformly bounded
second-order moments and finite conditional second-order
moments, which include bounded and Gaussian white noises
as special cases. Comparing with the existing work [20], [25],
[26], here the independency of noises of different commu-
nication channels is not required. To attenuate the noises, a
distributed stochastic approximation type protocol is used
and the convergence properties of the closed-loop system are
analyzed by combining probability limit theory and algebraic
graph theory.

In summary, the paper is characterized by the following
points: i) For the case of fixed topologies, we prove that if
the network is a balanced graph containing a spanning tree
and the consensus gains satisfy the step rule of classical
stochastic approximation, then the closed-loop system will
achieve asymptotically unbiased mean square average-con-

sensus. Precisely, the designed protocol can guarantee that
each individual state converges in mean square to a common
random variable, whose expectation is right the average of
the initial states of the whole system. Actually, this condition,
in some sense, is necessary and sufficient for asymptotically
unbiased mean square average-consensus. ii) For the case of
time-varying topologies, the convergence of the closed-loop
system is analyzed. The results for the fixed topologies show
that to ensure average-consensus with communication noises, it
is necessary to introduce decreasing consensus gains. However,
the use of decreasing consensus gains leads to the failure of a
key assumption, which requires that the nonzero off-diagonal
elements of the state matrix are uniformly bounded away from
zero. This key assumption has been widely used in the relevant
literature for the noise-free cases [27]–[34]. The absence of
this assumption together with the time-varying topologies and
the communication noises brings essential difficulty to the con-
vergence analysis. We combine martingale convergence theory
and algebraic graph theory together. By properly selecting
Lyapunov functions, we convert the convergence analysis of
matrix products into that of scalar sequences, and show that if
the network switches between jointly-containing-spanning tree,
instantaneously balanced graphs and the consensus gains de-
crease with a proper rate, then the closed-loop system achieves
asymptotically unbiased mean square average-consensus. iii)
The sample path behavior of the distributed consensus proto-
cols is analyzed. It is well known that, for a stochastic system,
what can be really observed is always a sample path, so it is
more meaningful of designing a protocol to ensure almost sure
consensus. By using the nonnegative martingale convergence
theorem, sufficient conditions are presented to ensure almost
sure consensus for fixed and time-varying topology cases,
respectively. Particularly, for the case of fixed topologies, a
convergence rate of step mean consensus error is given in the
sense of probability one.

The remainder of this paper is organized as follows. In Sec-
tion II, some concepts in graph theory is described, and the
problem to be investigated is formulated. In Section III, for the
case of fixed topologies, a necessary and sufficient condition on
the network topology and the consensus gains is given for mean
square average-consensus, which is shown to be sufficient for al-
most sure consensus. In Section IV, for the case of time-varying
topologies, sufficient conditions are given to ensure mean square
and almost sure consensus, respectively. In Section V, a numer-
ical example is given to illustrate our algorithm. In Section VI,
some concluding remarks and future research topics are dis-
cussed.

The following notations will be used throughout this paper:
We denote a column vector with all ones by and the
dimensional identity matrix by . For a given set , its number
of elements is denoted by . For a given vector or matrix ,

denotes its transpose, and its 2-norm is denoted by ;
its spectral radius is denoted by , and its trace is denoted
by . For a given random variable , its mathematical ex-
pectation is denoted by ; and its variance is denoted by

. For a given positive number , the natural logarithm
of is denoted by , the maximum integer which is less
than or equal to is denoted by , and the minimum integer
which is greater than or equal to is denoted by . For a
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family of random variables (r.v.s) , the -algebra
is denoted by ,

where denotes the 1-D Borel set. For a -algebras and a
r.v. , we say is adapted to , if is measurable.

II. PROBLEM FORMULATION

A. Preliminary in Graph Theory

Let be a weighted digraph, where
is the set of nodes with node representing the

th agent, is the set of edges and is the
weighted adjacency matrix of . An edge in is denoted by an
ordered pair , and if and only if the th agent can
send information to the th agent directly. The neighborhood of
the th agent is denoted by . An
element of is called a neighbor of . The th node is called a
source, if it has no neighbors but is a neighbor of another node
in . A node is called an isolated node, if it has no neighbor and
it is not a neighbor of any other node.

For any , , and .
The in-degree of is defined as and

the out-degree of is defined as . The
Laplacian matrix of is defined as , where

.
is called a balanced digraph, if ,

. is called an undirected graph, if is a
symmetric matrix. It is easily shown that an undirected graph
must be a balanced digraph.

For a given positive integer , the union of digraphs
is denoted by

. By the definition of

Laplacian matrix, we know that .

A sequence of edges is called
a directed path from node to node . is called a strongly
connected digraph, if for any , there is a directed path
from to . A strongly connected undirected graph is also called
a connected graph. A directed tree is a digraph, where every
node except the root has exactly one neighbor and the root is
a source. A spanning tree of is a directed tree whose node
set is and whose edge set is a subset of . For a balanced di-
graph, containing a spanning tree is equivalent to being strongly
connected. We call jointly-containing-spanning-
tree, if has a spanning tree. Especially, if ,

, are all undirected graphs and jointly
contains a spanning tree, then is connected. In this
case, is called jointly-connected [33].

Below is a basic theorem on Laplacian matrices:
Theorem 2.1: [5], [35] If is an undirected

graph, then is a symmetric matrix, and has real eigen-
values, in an ascending order

and

where is called the algebraic connectivity of . Partic-
ularly, if is connected, then .

B. Consensus Protocol

In this paper, we consider the average-consensus control for
a network of discrete-time first-order agents with the dynamics

(1)

where and are the state and control of the th agent.
Here for simplicity, we suppose that and are scalars,
and the initial state is deterministic.

The th agent can receive information from its neighbors

(2)

where denotes the measurement of the th agent’s state
by the th agent; are the com-

munication noises. The graph shows the structure of the in-
formation flow in the system (1), called the information flow
graph or network topology graph of the system (1). Denote

, is usually called a dy-
namic network [5].

We call the group of controls a
measurement-based distributed protocol, if depends only
on the state of the th agent and the measurement of its neigh-
bors’ states, that is

The so-called consensus control means to design a mea-
surement-based distributed protocol for the dynamic network

, such that all agents achieve an agreement on their states
in some sense, when . The so-called average-consensus
control means to design a distributed protocol for the dynamic
network , such that for any initial value , the states
of all the agents converge to when ,

that is, can be computed in a distributed

way. In this case is called the group deci-
sion value [5]).

Applying the distributed protocol to the system (1), (2),
generally speaking, will lead to a stochastic closed-loop system,
and , are all stochastic processes. Below
we introduce the definition of average-consensus protocol in
mean square for stochastic systems.

Definition 2.1: [25] A distributed protocol is called an
asymptotically unbiased mean square average-consensus pro-
tocol if it renders the system (1), (2) has the following proper-
ties: for any given , there is a random variable ,
such that , , and

For the dynamic network , we use the distributed pro-
tocol

(3)
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where and whereafter , called consensus-gain function,
and if , then the sum is defined as zero.

Remark 1: When , (3) becomes the protocol
of [20]. Similar to [20], we call (3) a distributed stochastic ap-
proximation type protocol. It intuitively means that each agent
updates its state in the direction of the nonnegative gradient of
its local Laplacian potential. If the digraph is balanced, then

is called the
Laplacian potential function associated with ([5], which rep-
resents the degree of deviation between different agents’ states.

is called the local Laplacian poten-
tial of the th agent, and the nonnegative gradient direction with
respect to is . Due to the communication
noises, in the protocol (3), the update direction of the th agent
at time is , and is the step size.
When there is no communication noise (i.e. ) and

, (3) degenerates to the protocol (A.1) of [5].

III. FIXED TOPOLOGY CASE

In this section, we will prove that under mild conditions, the
control law (3) is an asymptotically unbiased mean square av-
erage-consensus and almost sure strong consensus protocol.

For conciseness of expression, in the sequel we will use the
following notations:

where and whereafter .
Remark 2: Obviously, . If

is a sequence of independent r.v.s with zero mean
and uniformly bounded second-order moments, then

. So bounded and Gaussian white noises both be-
long to .

Substituting the protocol (3) into (1) leads to

(4)
where and whereafter is an

dimensional block diagonal matrix with being
the th row of ; with

.
We need the following assumptions

A1) is a balanced digraph;
A2) contains a spanning tree;
A3) , ;
A3a) , .

Remark 3: Assumption A3a) is weaker than Assumption
A3). For example, if , , where

, then A3a) holds, but A3) fails.
We have the following theorems.

Theorem 3.1: Apply the protocol (3) to the system (1), (2),
and suppose that A1)–A2) and A3a) hold. Then for any

(5)

That is, (3) is a mean square weak consensus protocol [20]. Here
is the energy function of

the consensus error.
Proof: Denote , and

(6)

Then . Thus, from A1) and Theorem 6 of [5]
we have and , which together with (4) leads
to

(7)

and

(8)

From A1) and Theorem 7 of [5], is the
Laplacian matrix of the symmetrized graph1 of . From A2),
noticing that is undirected, we know that is strongly con-
nected, and hence, from Theorem 2.1, . Therefore,
from and (8) we have

(9)

Noticing that and , taking mathemat-
ical expectation on both sides of the above inequality, we have

(10)

Noticing that and , , we know
that there is such that , and

, . Thus

(11)

Then by A3a), we have

(12)
and

(13)

1The definition of the symmetrized graph of a digraph is referred to Definition
2 of [5].
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which together with (11), (12) and Lemma A.1 in Appendix A
leads to (5).

Remark 4: In [20], it is proved that if A3) holds, and the net-
work is a connected undirected graph, then the stochastic ap-
proximation type protocol can ensure mean square weak con-
sensus. Here, in Theorem 3.1, we give a weaker condition A3a)
to ensure mean square weak consensus for balanced digraphs.

In the protocol (3), an agent-independent consensus gain
is used. This requires some coordination of the consensus gain
across the agents. It is interesting to investigate the case with
agent-dependent consensus gains. For instance, in practical ap-
plications, there may be a small error between the actual con-
sensus gain of the th agent and the designed consensus
gain . In this case, the protocol (3) becomes

(14)

We have the following theorem.
Theorem 3.2: Apply the protocol (14) to the system (1), (2).

If Assumptions A1)–A2) hold, and

(15)

(16)

(17)

then for any

(18)

Proof: Denote

where . Substituting the protocol (14) into
the system (1), (2), similar to (8), we have

(19)

From above, noting that , similar to
(10), we have

(20)
where

and . By (16), we know that

(21)

By (15), we have

(22)

Noting that , by (17), we
know that

Then by (20), (21), and (22), similar to (11)–(13), we know that
there exists , such that

(23)

(24)

and

(25)

Then by (23), (24), (25) and Lemma A.1 in Appendix A, we
have (18).

For the sufficient conditions to ensure (3) to be an asymp-
totically unbiased mean square average-consensus protocol, we
have the following theorem.

Theorem 3.3: Apply the protocol (3) to the system (1), (2). If
Assumptions A1)–A3) hold, then for any

(26)
where is a r.v. dependent on and , satisfying
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Especially, if , ,
are mutually independent, then , where

That is, (3) is an asymptotically unbiased mean square average-
consensus protocol.

Proof: For all , from (4) and it follows
that:

Taking summation for both sides of the above equations from
to leads to

(27)

By and , we know that
is a martingale with

Then by Theorem 7.6.10 of [36], it is known that
converges in mean square as . Denote

the limit by . Then, (26) follows from Theorem
3.1 with

By Corollary 4.2.5 of [37], we have

(28)

This together with the Cauchy inequality gives

When , , are
independent, by (28) we have

This completes the proof of the theorem.
Remark 5: Theorems 3.1–3.3 indicate that, for fixed topolo-

gies, Assumptions A1)–A3) is a sufficient condition for the
protocol (3) to ensure mean square weak consensus and asymp-
totically unbiased mean square average-consensus. Assumption
A2) is to ensure the connectivity of the network to some
extent, that is, the algebraic connectivity , such
that different agents may asymptotically agree on their states;
Assumption A1) is to ensure the state average evolve around

such that an average-consensus can be
achieved.

Assumption A3) is the step rule of standard stochastic ap-
proximation. From the proof of Theorem 3.1, it can be seen that
the condition is to ensure the consensus error
converges to zero with a certain rate. From the proof of The-
orem 3.3, one can see the important role played by the condi-
tion : when there are communication noises,
by (27), the state average of the closed-loop system is not a con-
stant any more, and ensures convergence of
the state average of the closed-loop system.

Remark 6: From Theorem 3.3, it can be seen that, under the
control of the protocol (3), there exists static error between the
final state of the closed-loop system and the average of the initial
states. describes the static error in the sense of mean
square. In fact, it can be shown that, if the conditions of Theorem
3.3 hold, then

that is, gives the static maximum mean square error
between each individual state and the average of the initial states
of the whole system.

Remark 7: In some application of the information fusion of
wireless sensor networks, the number of network nodes is
usually very large. Theorem 3.3 gives the analytic expression
of the static maximum mean square error between each indi-
vidual state and the average of the initial states of the whole
system, from which, one can see that the impact of on
the accuracy of the information fusion. When the noises of
different communication channels are mutually independent,

is proportional to . Especially, if ,
, then ,

. This means that the more the network nodes are,
the better the effect of the information fusion is. However, a
large number of nodes will result in a high cost for running
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and maintenance of the whole network, so the choice of is a
trade-off between the fusion accuracy and the cost.

On necessity of Assumptions A1)–A3) for asymptotically un-
biased mean square average-consensus, we have the following
result.

Theorem 3.4: Apply the protocol (3) to the system (1), (2).
If (3) is an asymptotically unbiased mean square average-con-
sensus protocol for any , then Assumptions A1)–A3)
hold.

Proof: The proof is provided in Appendix B.
Remark 8: In [20], sufficient conditions were given to

ensure mean square weak consensus for undirected graphs
with independent and identically distributed communication
noises. In [26], a necessary and sufficient condition was given
to ensure continuous-time mean square average-consensus for
Gaussian noises. Here, From Theorems 3.3–3.4, it can be seen
that A1)–A3) is a necessary and sufficient condition to ensure
that (3) is a mean square average-consensus protocol for any
communication noises which are martingale differences with
bounded second order moments.

For the special case with no communication noise, a sufficient
condition for the protocol (3) to ensure average-consensus is
given by the following theorem.

Theorem 3.5: Apply the protocol (3) to the system (1), (2)
with , . If A1)–A2) hold,
and

(29)

where , then

Proof: Noticing that , , by A1) and
A2), similar to (10), we have

Take a constant . Then by (29),
we know that there is , such that

(30)

and

(31)

By (30), we have

(32)

By (31), we have

(33)

From (30) and , one gets

which together with (32), (33) and Lemma A.1 leads to

(34)

Similar to (27), noticing that , , we have

This together with (34) leads to the conclusion of the theorem.
Remark 9: Comparing Theorem 3.1 of [26] with Theorem

3.5 here, one can see the difference between continuous-time
and discrete-time protocols. In the noise-free case, for the con-
tinuous-time protocol in [26] to ensure average-consensus, it is
only required that the consensus gain satisfies

; while for the discrete-time protocol (3), generally speaking,
only is not sufficient, since overlarge consensus
gains will make the eigenvalues of the closed-loop state matrix
go out of the unit circle of the complex plane. This also re-
flects the essential difference between continuous-time and dis-
crete-time systems.

From the following theorem, it can be seen that under As-
sumptions A1)–A3), for a class of communication noises, the
protocol (3) can ensure almost sure consensus as well.

Theorem 3.6: Apply the protocol (3) to the system (1), (2). If
Assumptions A1)–A3) hold, then for any

(35)
That is, (3) is an almost sure strong consensus protocol [20].
Here, is given by Theorem 3.3. Furthermore, if ,

, then

(36)

where is given by (6).
Proof: For all , from and (9) it

follows that:

(37)

Noticing that a.s. and
, by nonnegative supermartingale conver-

gence theorem [38], [39] we know that converges almost
surely as , and

(38)



2050 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 55, NO. 9, SEPTEMBER 2010

Furthermore, by Theorem 3.1 and (see Remark 3)

(39)

By and , we know that
is a martingale with

Then by Theorem 7.6.10 of [36], it is known that
converges both in mean square and almost

surely as . Thus, by (27) and (39), one gets
converges almost surely as , . This
together with Theorem 3.3 gives (35).

If , , then by Kronecker lemma [37] and (38)
we have

which together with Cauchy inequality results in

Remark 10: Theorem 3.6 implies that, under the same con-
ditions, the states of different agents converge asymptotically to
a common random variable with probability one. Note that this
random variable may not be precisely the average of the ini-
tial states, although its sample mean is. In this case, (36) gives
a rough estimate for the convergence rate of step mean con-
sensus error.

IV. TIME-VARYING TOPOLOGY CASE

In this section, we consider the case of time-varying
topologies. In this case, the distributed protocol is running
over a flow of topology graphs , where

, , is a sequence of
digraphs with the same vertex set. The edge sets and weighted
adjacency matrices are time-varying.

The networks with time-varying topologies can be found in
many engineering, biological, social and economic systems,
such as the creation and failure of communication links, the
loss of data packages, the variation of the channel parameters,
and the evolvement and reconfiguration of formations in swarm
and flocking [40]. In many cases, fixed topologies are only ideal
models, even if the protocol is designed for a fixed topology,
it is necessary to consider the robustness of the protocol with
respect to the time-variation of the topology. For the stability
and consensus of time-varying networked systems without
communication noises, the readers are referred to [27], [34].

Here we will consider two kinds of typical topology graph
flows

which is a family of all sequences of balanced graphs with
bounded weighted adjacent matrix. It can be seen that a se-
quence of undirected graphs with bounded weighted adjacent
matrix belongs to

which is a family of sequences of switching balanced graphs.
Obviously, . If , then the
set has only finite elements. The most
common sequence of switching balanced graphs is the sequence
of undirected graphs
with weighted adjacent matrices , whose
elements take only two kinds of values: when and are mutu-
ally neighbors, , otherwise,

, . This kind of sequences of switching
undirected graphs are widely involved in the synchronization
of Vicsek models [33], [41].

For , the distributed network protocol is
given by

(40)
where is the element of th row and th column of ,
which is the weighted adjacency matrix at time .

, and . Here

(41)

Since is adapted to ,
, is a

distributed protocol.
Substituting the protocol (40) into (1) gives

(42)

In this section, we need the following assumption
A4) , , and

Remark 11: If or ,
then both A3) and A4) hold. In fact, if there is ,

, and , , , such that for
sufficiently large , ,
then A3) holds. If decreases monotonically, and there is

and , , , such that for
sufficiently large , , then
both A3) and A4) hold.

For convenience of citation, below we denote ,

where . The main results of this section are
summarized in the following theorems.

Theorem 4.1: Apply the protocol (40) to the system (1), (41).
For any given , if there is an integer
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such that and Assumptions A3a)–A4)
hold, then for any

(43)

That is, (40) is a mean square weak consensus protocol.
Proof: Noticing that is a balanced graph, similar to

(7), by (42) we have

(44)
and hence

(45)

where , ,

, ;
.

By Assumption A4), we know that there exits constant
and positive integer , such that

and , . Then by ,
noting that , we have

where

(46)

Thus, by the definition of and (45), we have

(47)

where . From ,

and the definition of it follows that:

which implies

(48)

Further, by , there exists a constant
such that

(49)

Since , , is a balanced digraph, by Theorem
7 of [5], , where denotes
the symmetrized graph of . By the def-
inition of the union graph of symmetrized graphs we have

, which in turn gives

Thus, by (47), (48), (49) and Theorem 2.1 we have

(50)

Noticing that

and

similar to (11), (12) and (13), by (50) and Lemma A.1, we get
, .

Therefore, for any given , there is an such that

(51)

and

(52)

Let . Then, for any given , we have
and

(53)
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From (44) and the definition of , we have

(54)

where

, ,
; , . Thus, there exists a

such that , . This together
with (53), (51), (52) and (54) gives

Hence, (43) follows from the arbitrariness of .
Theorem 4.2: Apply the protocol (40) to the system (1), (41).

For any given , if there is an integer
such that and Assumptions A3)–A4)

hold, then for any

(55)
where is a r.v. dependent on , and

, satisfying and
. That is, (40) is an asymptotically unbi-

ased mean square average-consensus protocol.
Proof: By (42) and similar to (27) we have

(56)
By , and ,

is convergent in mean square. Hence, by
Theorem 4.1, similar to the proof of Theorem 3.3, we have
(55).

Remark 12: Different from the randomly time-varying com-
munication link failures considered in [42], here, the network
topology may change continuously and to ensure mean square
average-consensus, we do not need additional distribution con-
ditions on the events of the link failures and creations.

Theorem 4.3: Apply the protocol (40) to the system (1), (41).
For any given , if there is an integer

such that and Assumptions A3)–A4)
hold, then for any

(57)

where is given by Theorem 4.2. That is, (40) is an almost
sure strong consensus protocol.

The proof of Theorem 4.3 needs the following two lemmas.
Lemma 4.1: For a sequence of digraphs ,

the following three statements are equivalent.

i) There is an integer such that .
ii) There is an integer such that .

iii) There are integers and such that
.

Proof: and are straightforward. It
suffices to show that and .

. Suppose that holds for some
integer . For any given , set . Then,

is the Laplacian matrix

of the union of graphs: and .
Thus, is positive semidef-

inite, which together with Theorem 2.1 gives

Thus .
. Suppose that holds for

some integers and . Let ,
, . Then,

is positive semidefinite, which together

with Theorem 2.1 gives

Noticing that , we have

Lemma 4.2: Apply the protocol (40) to the system (1), (41).
For any given , if there are integers

and such that and Assump-
tions A3)–A4) hold, then for any

Proof: First, by Lemma 4.1 and Theorem 4.1 we have

(58)

By , there is a constant such that

(59)

By (44), similar to (45) and (47), we have
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and

(60)

Notice that
is an adapted sequence. Then, from (60) and (59) it follows that

(61)

where is given by (46). Since ,
and , by (59), (61) and the
nonnegative supermartingale convergence theorem we know
that converges a.s. as . Furthermore, by
(58) we have

Proof of Theorem 4.3: By Lemma 4.1, there exists
such that , .
Thus, it follows from Lemma 4.2 that

This implies

(62)

Since is martingale with
, by Theorem 7.6.10

of [36], we know that converges almost
surely as . This together with (62) and (56) implies that

, , converges almost surely as .
Thus, by Theorem 4.2 we get (57).

Corollary 4.1: Apply the protocol (40) to the system (1), (41).
For any given , if there is an integer

such that for any , contains
a spanning tree, and Assumptions A3)–A4) hold, then for any

Proof: Since , , has a span-
ning tree, , , is strongly connected, which
together with Theorem 2.1 implies , .
Furthermore, by ,

, and hence, .

This together with Theorem 4.2 and completes the
proof.

Corollary 4.2: Apply the protocol (40) to the system (1), (41).
For any given , if there is an integer

such that for any , contains a
spanning tree, and A3)–A4) hold, then for any

where is given by Theorem 4.2. That is, (40) is an almost
sure strong consensus protocol.

Proof: Similar to Corollary 4.1, we can get
. This together with Theorem 4.3 and leads to the

desired conclusion.
Remark 13: Theorems 4.1–4.3 are for the case of

time-varying graph flows, while Corollaries 4.1–4.2 are
for the special cases of switching graph flows, where the
network switches among a finite number of digraphs and the
condition that there is such that
is equivalent to that there is such that for any

, contains a spanning tree, that is,
, , are

all jointly-containing-spanning-tree.

V. NUMERICAL EXAMPLE

Example 1: Consider a dynamic network of three agents
with switching topologies .
When ,

, where , , . When
, ,

where , , . It can be
seen that is balanced, and has
a spanning tree, . The initial states of agents are
given by , and . The
communication noises , , and are
independent white noises with uniform distribution on [ 0.3,
0.3]. If the protocol (A.1) of [5] is used, due to the communica-
tion noises, the actual control input of each agent is given by

,
;

(63)

,
;

(64)

,
(65)

where According to [6], if the network switches
between jointly-containing-spanning-tree, instantaneously bal-
anced graphs, then the weighted average type protocol can en-
sure average-consensus. However, due to the communication
noises, we can see that the actual closed-loop system is diver-
gent as shown in Fig. 1, where and whereafter, the curves of
states are sample path plots for one-time implementation of the
communication noises.

If we take the consensus gain ,
, then the control input of each agent is given by

,
;

(66)
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Fig. 1. Curves of states under the protocol (63)–(65) with bounded noises.

Fig. 2. Curves of states under the protocol (66)–(68) with bounded noises.

,
;

(67)

,
(68)

where In this case, the conditions of Corollary
4.1–4.2 hold. The states of the closed-loop system are shown in
Fig. 2. It is shown that average-consensus is achieved asymptot-
ically.

If the communication noises are Gaussian white noises
with distribution , and the initial states are given
by , and , then under the
protocol (66)–(68), the states of the closed-loop system are
shown in Fig. 3. It is shown that average-consensus is achieved
asymptotically.

VI. CONCLUSION

In this paper, average-consensus control has been considered
for networks of discrete-time first-order agents with fixed and
time-varying topologies. The control input of each agent can
only use its local state and the states of its neighbors corrupted
by stochastic communication noises. Due to the communication
noises, the stability of the closed-loop system cannot be ensured

Fig. 3. Curves of states under the protocol (66)–(68) with Gaussian noises.

by using only the weighted average-type protocol proposed by
[5]. To solve this problem, a distributed stochastic approxima-
tion type protocol is adopted to reduce the impact of the noises.
By the probability limit theory and algebraic graph theory, con-
sensus conditions for this kind of protocols are obtained. For
the case of fixed topologies, a necessary and sufficient condition
for mean square average-consensus is given, which is also suf-
ficient for almost sure consensus. For the case of time-varying
topologies, sufficient conditions for mean square average-con-
sensus and almost sure consensus are given, respectively. Our
research shows that distributed stochastic approximation type
consensus protocol is strongly robust against both the time-vari-
ation of topologies and the communication noises. If the net-
work topology is a balanced digraph jointly containing a span-
ning tree, then the designed protocol can guarantee that each
individual state converges in mean square to a common random
variable. For the future research, continuous-time cases, more
complex agent dynamics may be considered. In addition, it is in-
teresting to investigate the case with both communication noises
and time-delays.

APPENDIX A

Lemma A.1: [43] Let ,
and be real sequences, satisfying

, , , ,
, , and

Then . In particular, if ,
, then , .

APPENDIX B
THE PROOF OF THEOREM 3.4

Lemma B.1: Apply the protocol (3) to the system (1), (2). If
, , then

(B.1)

only if A1)–A2) hold.
Proof: It suffices to show that if is a non-balanced graph

or does not contain a spanning tree, then (B.1) does not hold.
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Step 1: Consider the case where is a non-balanced graph.
In this case, since is the Laplacian matrix, has a zero
eigenvalue. And hence, there exists an -dimensional vector

, , such that . Furthermore, by Theorem
6 of [5], . This together with (4) and
implies that , . Thus

(B.2)

When (B.1) holds, so does (5), and hence

which together with (B.2) leads to . This contra-
dicts . Thus, (B.1) does not hold.

Step 2: Consider the case where does not contain a span-
ning tree. In this case, there are only three possibilities [29]:

I) has at least one isolated node . Applying protocol (3)
results in

where
;

is the Laplacian matrix of the graph removing the
isolated node . Take , , .
Then, implies . By we
have , . Thus, (B.1) does not hold.

II) does not have any isolated node, but has at least two
source nodes , . Take , . Then,
applying protocol (3), similar to I), we have

. Thus, (B.1) does not hold.
III) does not contain isolated and contain at most one

source node, but can be divided into two subgraphs
and , satisfying

, , , . Without
loss of generality, suppose that ,

,
is a diagonal block matrix. Then, applying protocol (3)
leads to

where , are the states of the nodes in and
, respectively; , are the Laplacian matrices of

and , respectively. Take , , ,
. Then, similar to I), we have

, , . Thus, (B.1) does not hold.
Lemma B.2: Apply the protocol (3) to the system (1), (2).

If for any , there is such that
, then for any given , there

is such that .
Proof: By contradiction, suppose there was a

such that for all , . Then, there would be
a.s., , which together with (7) implies that

, . This contradicts
the condition of the lemma. Thus, the lemma is true.

Proof of Theorem 3.4: We need only to show that none of the
following four cases is true:

I) Assumption A1) does not hold.
II) Assumption A2) does not hold.

III) Under Assumption A1), .
IV) Under Assumption A1)

By and Lemma B.1, it
is clear that neither I) nor II) is true. So, it suffices to show that
neither III) nor IV) is true.

Step 1: Prove that III) is not true.
Suppose that there is at least a node which is not a source

node, that is, there is , , such that .
Without loss of generality, suppose , . Let

, where
is a standard white noise sequence. Then, one can see

that .
If , then by (27) and the condition that ,

, converges in mean square to a common random
variable with finite second-order moment, we would have that

converges in mean square to a
random variable with finite second-order moment , as

. Furthermore, by Corollary 4.2.5 of [37], we get

(B.3)

On the other hand

This contradicts (B.3). Thus, III) is not true.
Step 2: Prove that IV) is not true.
Similar to Step 1, suppose that , and that is the

same as in Step 1. Since , as .
Notice that ,

. Then, by Lemma B.2, there is such that

(B.4)

(B.5)

By (8), similar to (10) we have

This together with (B.5) and , ,
implies

Thus, from (B.4) and we have
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This contradicts the fact that , , converges
in mean square to a common random variable. Thus, IV) is not
true.
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